

IPython2CWL: Convert Jupyter Notebook to CWL

[image: _images/ipython2cwl.svg]
 [https://travis-ci.com/giannisdoukas/ipython2cwl][image: _images/badge.svg]
 [https://coveralls.io/github/giannisdoukas/ipython2cwl?branch=master][image: _images/month.svg]
 [https://github.com/giannisdoukas/ipython2cwl]

IPython2CWL is a tool for converting IPython [https://ipython.org/] Jupyter Notebooks to
CWL [https://www.commonwl.org/] Command Line Tools by simply providing typing annotation.

from ipython2cwl.iotypes import CWLFilePathInput, CWLFilePathOutput
import csv
input_filename: 'CWLFilePathInput' = 'data.csv'
with open(input_filename) as f:
 csv_reader = csv.reader(f)
 data = [line for line in csv_reader]
number_of_lines = len(data)
result_file: 'CWLFilePathOutput' = 'number_of_lines.txt'
with open(result_file, 'w') as f:
 f.write(str(number_of_lines))

IPython2CWL is based on repo2docker [https://github.com/jupyter/repo2docker], the same tool
used by mybinder [https://mybinder.org/]. Now, by writing Jupyter Notebook and publishing them, including repo2docker
configuration, the community can not only execute the notebooks remotely but can also use them as steps in scientific
workflows.

	Install ipython2cwl [https://pypi.org/project/ipython2cwl/]: pip install ipython2cwl

	Ensure that you have docker running

	Create a directory to store the generated cwl files, for example cwlbuild

	Execute jupyter repo2cwl https://github.com/giannisdoukas/cwl-annotated-jupyter-notebook.git -o cwlbuild

HOW IT WORKS?

IPython2CWL parses each IPython notebook and finds the variables with the typing annotations. For each input variable,
the assigment of that variable will be generalised as a command line argument. Each output variable will be mapped
in the cwl description as an output file.

SUPPORTED TYPES

Basic Data Types

Each variable can be an input or an output. The basic data types are:

	Inputs:

	CWLFilePathInput

	CWLBooleanInput

	CWLStringInput

	CWLIntInput

	Outputs:

	CWLFilePathOutput

	CWLDumpableFile

	CWLDumpableBinaryFile

Complex Dumpables Types

Dumpables are variables which are able to be written to a file, but the jupyter notebook developer
does not want to write it, for example to avoid the IO overhead. To bypass that, you can use
Dumpables annotation. See dump() for more details.

	
class ipython2cwl.iotypes.CWLBooleanInput

	Use that hint to annotate that a variable is a boolean input. You can use the typing annotation
as a string by importing it. At the generated script a command line argument with the name of the variable
will be created and the assignment of value will be generalised.

>>> dataset1: CWLBooleanInput = True
>>> dataset2: 'CWLBooleanInput' = False

	
class ipython2cwl.iotypes.CWLDumpable

	Use that class to define custom Dumpables variables.

	
classmethod dump(dumper: Callable, filename, *args, **kwargs)

	Set the function to be used to dump the variable to a file.

>>> import pandas
>>> d: CWLDumpable.dump(d.to_csv, "dumpable.csv", sep="\t", index=False) = pandas.DataFrame(
... [[1,2,3], [4,5,6], [7,8,9]]
...)

In that example the converter will add at the end of the script the following line:
>>> d.to_csv(“dumpable.csv”, sep=”t”, index=False)

	Parameters

	
	dumper – The function that has to be called to write the variable to a file.

	filename – The name of the generated file. That string must be the first argument
in the dumper function. That file will also be mapped as an output in
the CWL file.

	args – Any positional arguments you want to pass to dumper after the filename

	kwargs – Any keyword arguments you want to pass to dumper

	
class ipython2cwl.iotypes.CWLDumpableBinaryFile

	Use that annotation to define that a variable should be dumped to a binary file. For example for the annotation:

>>> data: CWLDumpableBinaryFile = b"this is text data"

the converter will append at the end of the script the following lines:

>>> with open('data', 'wb') as f:
... f.write(data)

and at the CWL, the data, will be mapped as a output.

	
class ipython2cwl.iotypes.CWLDumpableFile

	Use that annotation to define that a variable should be dumped to a text file. For example for the annotation:

>>> data: CWLDumpableFile = "this is text data"

the converter will append at the end of the script the following lines:

>>> with open('data', 'w') as f:
... f.write(data)

and at the CWL, the data, will be mapped as a output.

	
class ipython2cwl.iotypes.CWLFilePathInput

	Use that hint to annotate that a variable is a string-path input. You can use the typing annotation
as a string by importing it. At the generated script a command line argument with the name of the variable
will be created and the assignment of value will be generalised.

>>> dataset1: CWLFilePathInput = './data/data.csv'
>>> dataset2: 'CWLFilePathInput' = './data/data.csv'

	
class ipython2cwl.iotypes.CWLFilePathOutput

	Use that hint to annotate that a variable is a string-path to an output file. You can use the typing annotation
as a string by importing it. The generated file will be mapped as a CWL output.

>>> filename: CWLBooleanInput = 'data.csv'

	
class ipython2cwl.iotypes.CWLIntInput

	Use that hint to annotate that a variable is a integer input. You can use the typing annotation
as a string by importing it. At the generated script a command line argument with the name of the variable
will be created and the assignment of value will be generalised.

>>> dataset1: CWLBooleanInput = 1
>>> dataset2: 'CWLBooleanInput' = 2

	
class ipython2cwl.iotypes.CWLPNGFigure

	The same with CWLPNGPlot but creates new figures before plotting. Use that
annotation of you don’t want to write multiple graphs in the same image

>>> import matplotlib.pyplot as plt
>>> data = [1,2,3]
>>> new_data: 'CWLPNGPlot' = plt.plot(data)

the converter will tranform these lines to

>>> import matplotlib.pyplot as plt
>>> data = [1,2,3]
>>> plt.figure()
>>> new_data: 'CWLPNGPlot' = plt.plot(data)
>>> plt.savefig('new_data.png')

	
class ipython2cwl.iotypes.CWLPNGPlot

	Use that annotation to define that after the assigment of that variable the plt.savefig() should
be called.

>>> import matplotlib.pyplot as plt
>>> data = [1,2,3]
>>> new_data: 'CWLPNGPlot' = plt.plot(data)

the converter will tranform these lines to

>>> import matplotlib.pyplot as plt
>>> data = [1,2,3]
>>> new_data: 'CWLPNGPlot' = plt.plot(data)
>>> plt.savefig('new_data.png')

Note that by default if you have multiple plot statements in the same notebook will be written
in the same file. If you want to write them in separates you have to do it in separate figures.
To do that in your notebook you have to create a new figure before the plot command or use the CWLPNGFigure.

>>> import matplotlib.pyplot as plt
>>> data = [1,2,3]
>>> plt.figure()
>>> new_data: 'CWLPNGPlot' = plt.plot(data)

	
class ipython2cwl.iotypes.CWLStringInput

	Use that hint to annotate that a variable is a string input. You can use the typing annotation
as a string by importing it. At the generated script a command line argument with the name of the variable
will be created and the assignment of value will be generalised.

>>> dataset1: CWLBooleanInput = 'this is a message input'
>>> dataset2: 'CWLBooleanInput' = 'yet another message input'

THAT’S COOL! WHAT ABOUT LIST & OPTIONAL ARGUMENTS?

The basic input data types can be combined with the List and Optional annotations. For example, write the following
annotation:

file_inputs: List[CWLFilePathInput] = ['data1.txt', 'data2.txt', 'data3.txt']
example: Optional[CWLStringInput] = None

SEEMS INTERESTING! WHAT ABOUT A DEMO?

If you would like to see a demo before you want to start annotating your notebooks check here!
github.com/giannisdoukas/ipython2cwl-demo [https://github.com/giannisdoukas/ipython2cwl-demo]

WHAT IF I WANT TO VALIDATE THAT THE GENERATED SCRIPTS ARE CORRECT?

All the generated scripts are stored in the docker image under the directory /app/cwl/bin. You can see the list
of the files by running docker run [IMAGE_ID] find /app/cwl/bin/ -type f.

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 ipython2cwl	

 	
 	
 ipython2cwl.iotypes	

Index

 C
 | D
 | I

C

 	
 	CWLBooleanInput (class in ipython2cwl.iotypes)

 	CWLDumpable (class in ipython2cwl.iotypes)

 	CWLDumpableBinaryFile (class in ipython2cwl.iotypes)

 	CWLDumpableFile (class in ipython2cwl.iotypes)

 	CWLFilePathInput (class in ipython2cwl.iotypes)

 	
 	CWLFilePathOutput (class in ipython2cwl.iotypes)

 	CWLIntInput (class in ipython2cwl.iotypes)

 	CWLPNGFigure (class in ipython2cwl.iotypes)

 	CWLPNGPlot (class in ipython2cwl.iotypes)

 	CWLStringInput (class in ipython2cwl.iotypes)

D

 	
 	dump() (ipython2cwl.iotypes.CWLDumpable class method)

I

 	
 	ipython2cwl.iotypes (module)

 nav.xhtml

 Table of Contents

 		
 IPython2CWL: Convert Jupyter Notebook to CWL

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

